GC-QToF Analysis of Taste and Odor Compounds & Disinfection Byproducts in Water

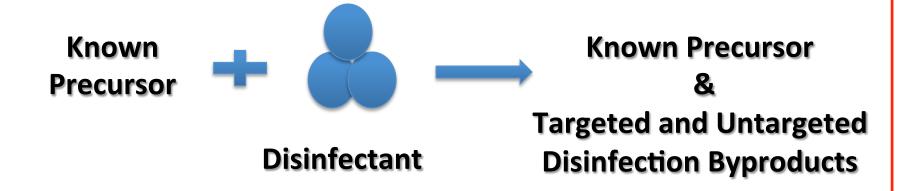
Sheena Young, Minkyu Park, Shane Snyder

I. Outline

Context of the study: Taste and Odor

Objective of the study

Sampling campaign


Sample preparation and analysis

Data processing for sample profiling

Conclusion & Perspectives

Objective

Problem: Limited analytical platforms available that can determine the fate of known contaminant precursors and disinfection byproducts formed from treatment processes.

Objective: To use the high resolution GC-QToF to develop a method that can identify (with confidence) the products of known contaminants after disinfection and determine the mechanism in their formation.

Taste and Odor Compounds

Aesthetics

Taste

Odor

Not regulated, <u>only</u> consumer preference

Taste and Odor Compounds

- ➤T/O compounds give water an earthy and musty taste¹
- >Shown to be recalcitrant to conventional water treatment methods²
- ➤ 16% of a total 377 utilities in the U.S. reported serious T/O problems³
- ➤ Low odor threshold (< 10 ng L⁻¹ for 2-MIB and Geosmin) ⁴

Customers associate odor & bad taste with contaminated water.

Taste and Odor Compounds

ANDERSON

COUNTY

- Many

people living

S.C.

have

contacted

4 over the

past few

davs and

WYFF News

Algae blamed for bad odor and taste in city of Houston water supply

Posted: Wednesday, June 25, 2014 9:14 am

By Y.C. OROZCO

League City officials say they will be increasing city-wide flushing activity in response to temporarily odorous wate

A blue-green algae occurring in the Lake Livingston Reservoir and Trinity River has been blamed for a foul odor and metallic taste in the water for residents in cities which obtain their primary water supply from Houston including League City.

> Advertisement-It's absolutely safe and has been through all of the processes," city spokesperson Kristi Wyatt said.

The complaints began last week, with residents reporting an unpleasant odor and taste in the water.

League City Water Department officials contacted the city's main water source, the city of Houston.

The city of Houston began an investigation and the in meantime, their customers started complaining (about

League City received a letter from the city of Houston stating that the algae did not pose a health or safety threat

The algae. Houston city officials said, were naturally occurring, was properly treated and regulatory compliant

According to a statement posted on the League City website and Facebook, the algae bloom is most likely due to recent rainfall in the Lake Livingston and Trinity watersheds. The odor and taste may occur, it said, in the water system "until the bloom cycles through the raw water supply."

The Houston city officials has estimated that the condition could last up to two more weeks.

water smells and tastes bad

WYFF News 4 looked into this on Monday

No one from the city or from Anderson Regional Joint Water System wanted to do an on-camera

SNOHOMISH

taste and odor in their water

ABOUT THAT FUNKY ODOR AND TASTE OF THE TAP WATER

(SNOHOMISH, WA) -- Late last week the city of Everett notified the Snohomish City staff that there were some "taste and odor issues" in the tap water occurring for some residents of Snohomish due to seasonal changes with the source water in Lake Chanlain

The water customers that were affected live in the area north of Tenth Street, or the "North Zone," according to a statement by city officials.

Everett officials said that during the week of Monday June 30 a number of water systems - including Everett, Alderwood, and the PUD - had received several calls from consumers about

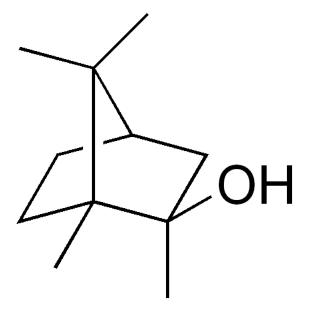
"The water filtration plant staff observed a die-off taking place in the plankton populations in Lake Chaplain early last week (a normal occurrence). This change appears to have resulted in the release of some taste and odor causing compounds into the source water," said the Everett city statement.

Bottom line: some of the compounds appeared to be reacting with chlorine to cause a bitter or metallic

Others seem to cause a musty or fishy taste and odor. The city says those compounds however do not present a health issue, but customers who have a "sensitive sense of taste and smell may notice the

The plant staff was continuing to monitor the conditions, and the city said it expected that the condition would pass this week

The area of Snohomish affected is supplied with water purchased from the City of Everett and is delivered directly to customers. It is stored in a 2.7 million gallon reservoir located off of Terrace Avenue.


If you have questions or concerns about your water you're asked to call Ann Ray, Water Quality Control Specialist at 360-568 7070 x232 or ray@snohomishwa.gov

This change is a result of the presence of blue-green algae in Lake Hartwell. Water from Lake Hartwell, the sole source of drinking water for the City, is treated and submitted to over 200 water quality tests each day to ensure that all water quality regulations are met and that the water is safe for all uses. Unfortunately, the growth cycle of the blue-green algae in contact with the lake water produces Geosmin and Methylisoborneol (MIB) compounds. These compounds are completely harmless, but do create an earthy taste and smell which can be unpleasant at elevated levels.

2-MIB

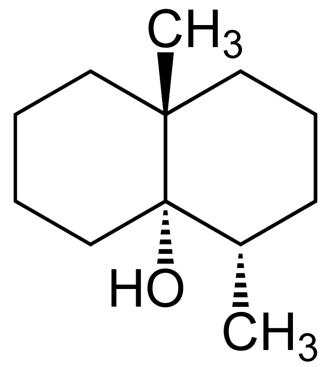
2-methylisoborneol (2-MIB)

1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

Algal-derived compounds (cyanobacteria)

Released upon organism death

MW= 168.28 g/mol


Boiling Point= 208.7 °C

Henry's Constant=2.68e⁻⁶ atm•m³ •mol⁻¹

Geosmin

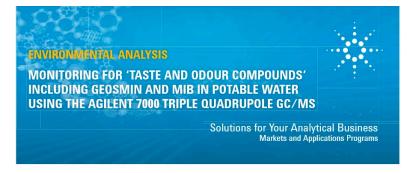
Geosmin

(4S, 4aS, 8aR)-4,8a-Dimtheyl- 1,2,3,4,5,6,7,8-octahydronaphthalen-4a-ol

Derived from gram positive bacteria

(Actinobacteria)

Released upon microorganism death


MW= 182.30 g/mol

Boiling Point= 270 °C

Henry's Constant=3.15e⁻⁶ atm• m³ •mol⁻¹

Literature Search

Abstract

ELSEVIED

Available online at www.sciencedirect.com

Analytica Chimica Acta 548 (2005) 79-85

ANALYTICA CHIMICA ACTA

www.elsevier.com/locate/aca

Simultaneous determination of 22 volatile organic compounds, methyl-tert-butyl ether, 1,4-dioxane, 2-methylisoborneol and geosmin in water by headspace solid phase microextraction-gas chromatography-mass spectrometry

Sadao Nakamura*, Shigeki Daishima

Yokogawa Analytical Systems Inc., 9-1 Takahara-cho, Hackioji-shi, Tokyo 192-0033, Japan Received 10 March 2005, received in revised form 27 May 2005; accepted 31 May 2005 Available online 14 July 2005

Solution Note

Author

Nick Davies

Dŵr Cymru Welsh Water, Newport, UK A target based screening method for a variety of 'taste and odour' compounds has been developed on an Agilent 7000 Triple Quadrupole GC/MS. There are 20 target compounds in this analytical suite, which includes Geosmin, 2-Methyl Isoborneol, Phenols, Anisoles, Pyrazines as well as 2-EMD and 2-EDD. This method is capable of achieving detection limits of 1 ng/L for all compounds and the range of application is up to 50 ng/L.

1 ng/L Detection Limit

Desalination 335 (2014) 47-54

Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water

Xiaojiang Fan a, Yi Tao a, Lingyun Wang a, Xihui Zhang a, Ying Lei a, Zhuo Wang a, Hiroshi Noguchi b

- a Research Center for Environmental Engineering & Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Meidensha Corporation, Meiko Building, 5-5-5 Osaki, Shinagawa-ku, Tokyo 141-8616, Japan

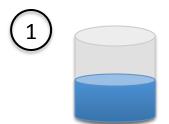
Sampling Campaign & Treatment

Collection

Water was collected from Colorado River through the Central Arizona Project (CAP)

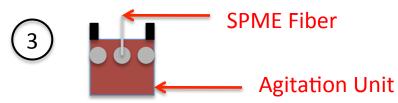
Sample spike

Samples were diluted to 2 mg L⁻¹ TOC and spiked with 500 ng L⁻¹ 2-MIB and Geosmin.

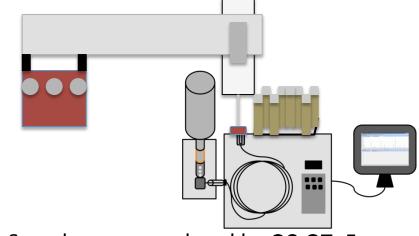

Ozonation

Spiked samples were ozonated at 3 doses & 3 time durations and then quenched with 50 mg L⁻¹ sodium sulfite.


3 Doses	3 Time Durations
1 ppm	0.5 min
2 ppm	1 min
3 ppm	2 min
Control (No ozone)	


Work Flow

Water Sample (No extraction step required)


10 mL of each blank, standard and sample was transferred to a 20-mL amber glass vial

Fiber was inserted into sample for extraction.

Fiber was inserted into injector for desorption.

Samples were analyzed by GC-QToF

Sample Analysis

Advantages of GC-QToF

- > Better Mass Accuracy enables identification of gas phase unknowns
- ➤ Higher Resolution compared to conventional techniques (ie. GC-ECD, GC-MS, GC-QQQ) that have unit resolution
- ➤ Ability to use QToF techniques to obtain fragmentation information (both electron impact and MS/MS) to identify unknowns
- > Fast scanning of full spectrum
- Compatible with headspace and solid phase microextraction (SPME) units

Sample Analysis

Agilent 7890A GC/7200 QToF MS

MS Conditions

Ionization Mode- EI (70eV)

Type of Data Acquisition- MS Only

Source Temp- 230℃

Quad Temp- 150°C

Transfer Line Temp- 250°C

Emission Current- 35A°

Acquisition Mode- 2 GHz

Acquisition Range- 40-200 amu

Acquisition Speed- 5 spectra/ second

Figure. Shown above is the Agilent 7200 GC/Q-TOF. It is equipped with the headspace-SPME autosampler.

Sample Analysis

Agilent 7890A GC/7200 QToF MS

GC Conditions

Column

DB-5 MS UI (30m x 250μm x 0.25μm)

Injector Mode

Splitless

Inlet Temperature

250°C

Carrier Gas/ Flow

Helium 1.0 mL/min

Oven Program

50°C Hold 1 min; 10°C/min to 200°C, Hold

1 min; 20°C/min to 220°C, Hold 1 min

Purge Time

5 min

SPME Conditions

Fiber Type

85 µm Carboxen/ Polydimethylsiloxane

Cycle

SPME 04-V2

Incubation Temperature

65 °C

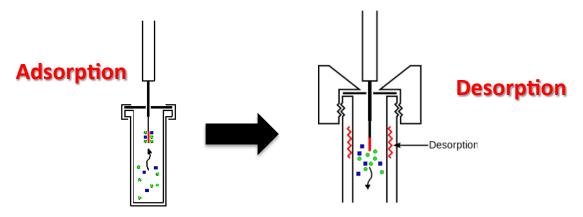
Agitation Speed

250 rpm

Extraction Time

1800 sec

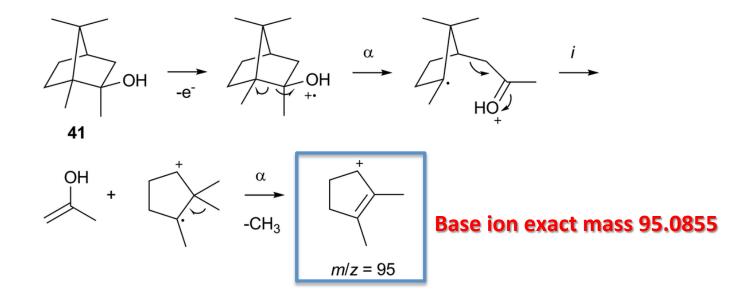
Desorption Time


300 sec

SPME

Solid Phase Microextraction (SPME)

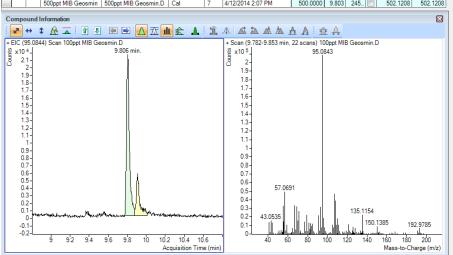
- ➤ Supelco 85 m Carboxen/ Polydimethylsiloxane selected
- ➤ Suitable for polar gases and low molecular weight (30-225 amu) compounds
- ➤ Used for trace organics
- Adsorption of analytes from liquid sample by immersion or headspace and desorption from the fiber by exposing fiber in the heated injection port.

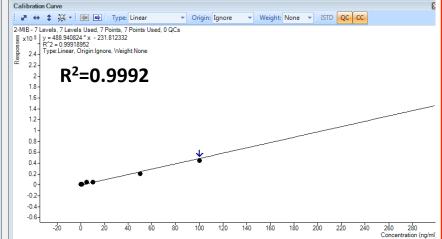


2-MIB and Geosmin are low molecular weight, polar compounds

Positive Electron Impact Fragmentation

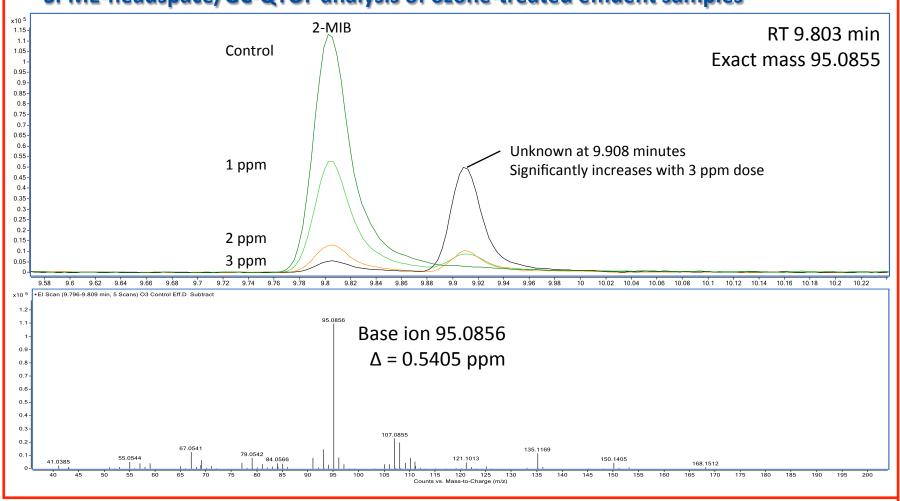
2-MIB


Schematic. Fragmentation mechanism of 2-MIB

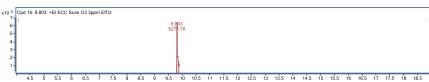


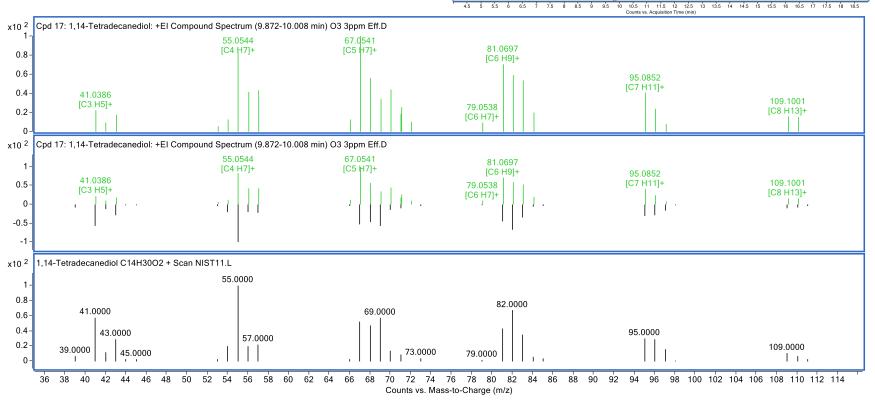
Chromatography and MS spectra

2-Methylisoborneol



Overlay of ion chromatograms





Putative ID of unknown at 9.908 minutes

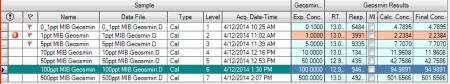
MassHunter deconvolution, NIST11 Library search suggests:

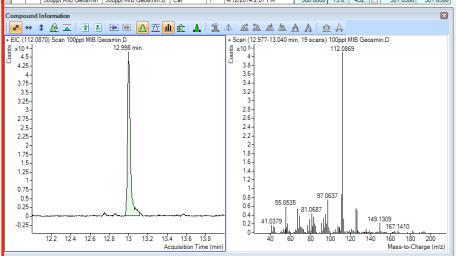
- a. 1,14-tetradecanediol, Match score > 92
- b. 1,10-decanediol, Match score > 91

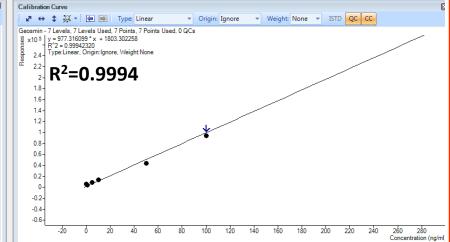
Positive Electron Impact Fragmentation

Geosmin

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

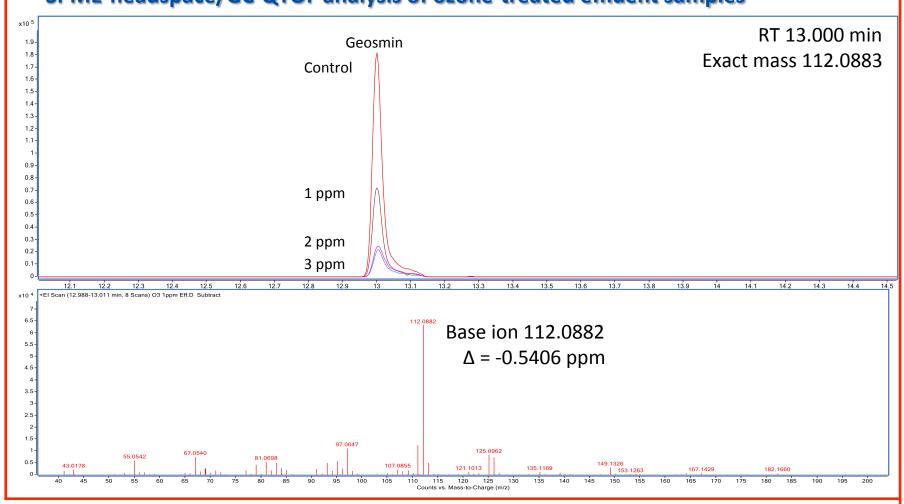

Base ion exact mass 112.0883


Schematic. Fragmentation mechanism of Geosmin



Chromatography and MS spectra

Geosmin



Geosmin: Overlay of Extracted Ion Chromatograms

SPME-headspace/GC-QTOF analysis of ozone-treated effluent samples

Proposed Degradation Mechanisms

Degradation mechanism

- ➤ The intermediates of Geosmin and 2-MIB that are formed by UV or oxidation degradation are not completely known.
- Alkanes, aldehydes, fatty acids, and hydrocarbons are formed.
- ➤ A mechanism for Geosmin was proposed.
- ➤ No published mechanism for 2-MIB.
- ➤ No ozonation studies. Similar Mechanism??

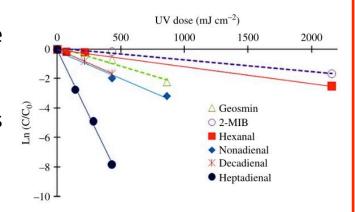
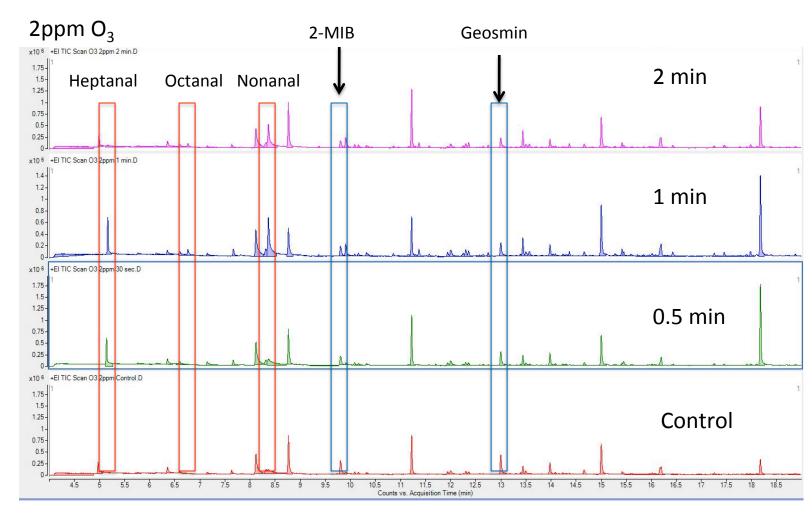


Figure 2 | Log removal of odorants with UV dose (6 mg l⁻¹ H₂O₂).

Proposed Geosmin Degradation Products

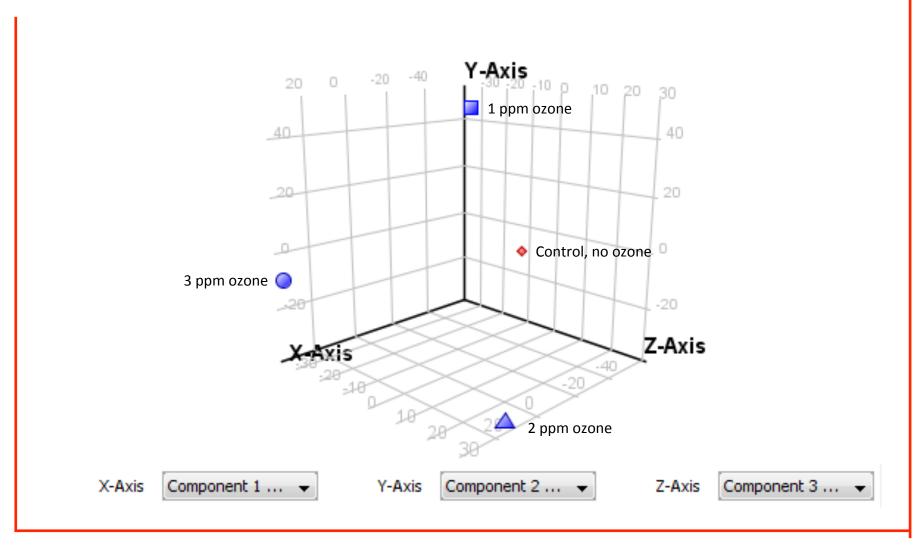
Chemical Formula: C₇H₁₄O Exact Mass: 114.1045

Octanal

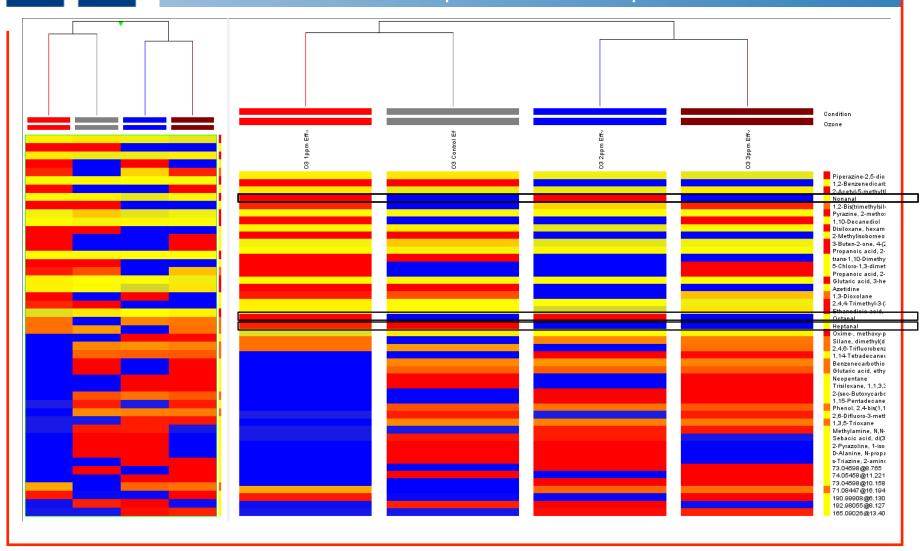

Chemical Formula: C₈H₁₆O Exact Mass: 128.1201

Nonanal

Chemical Formula: C₉H₁₈O Exact Mass: 142.1358



Water samples after increasing time exposure to Ozone


PCA shows each sample as unique 1 ppm closest & 3 ppm most distant from control

Hierarchal Clustering

Heptanal, Nonanal and Octanal show no clear dose-response relationship in this dataset

Conclusion & Perspectives

- ➤ Headspace-SPME coupled to GC-QToF was able to detect 2-MIB and Geosmin in real water samples down to the lower ppt level.
- It is possible that new odor-producing compounds are generated with ozonation.
- > The accurate mass spectra will allow identification of low level pollutants
- ➤ Additional Research
- ➤ Characterization of targeted compounds with various polarity SPME fibers
- Further investigation with both CI and EI sources and using MPP to identify the untargeted byproducts

II. Outline of DBPs Study

Context of the study: DBPs

Objective of the study

Sample preparation and analysis

Data analysis

Conclusion

Perspectives

Disinfection Byproducts

Disinfection Byproducts (DBPs)

Disinfectants such as chlorine react with organic matter to produce new, sometimes more harmful, products.

Most Common Classes of DBPs

Trihalomethanes (THMs)

Haloacetic Acids (HAAs)

Haloacetonitriles (HANs)

Haloacetamides (HAms)

Nitrosamines

Mutagenic to both human and aquatic life

Developmental and reproductive toxins

Some are proven carcinogens

EPA's Disinfectants and Disinfection Byproduct Rule- regulates DBPs with a maximum contamination level

Disinfection Byproducts

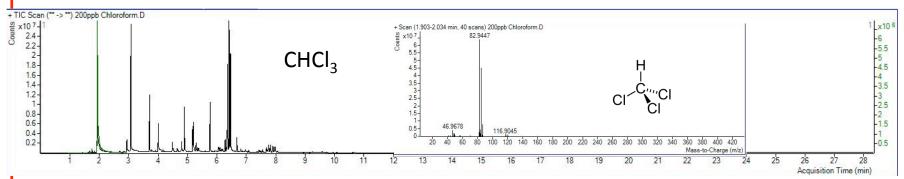
Trihalomethanes (THMs)

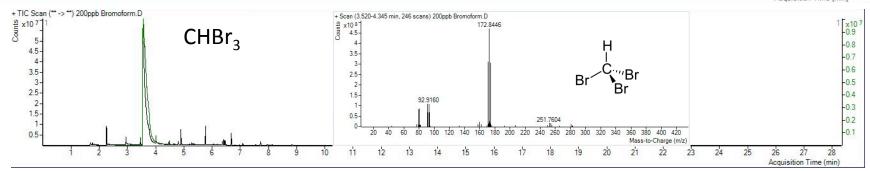
Chemical	lon	Boiling Point (°C)	Henry's constant (atm•m³•mol⁻¹)
Trichloromethane (Chloroform)	82.9448	91	3.67e ⁻³
Tribromomethane (Bromoform)	172.8434	167	5.35e ⁻⁴
Bromodichloromethane	82.9451	117	2.12e ⁻³
Dibromochloromethane	77.0048	142	7.83e ⁻⁴

- ➤ Highly volatile compounds
- > Exposure recreationally in pools, food, drinking, water
- Causes liver and kidney toxicity
- Carcinogenic, adverse reproduction and developmental effects

THMs are formed during disinfection treatment processes- chlorine or bromine react with organic matter.

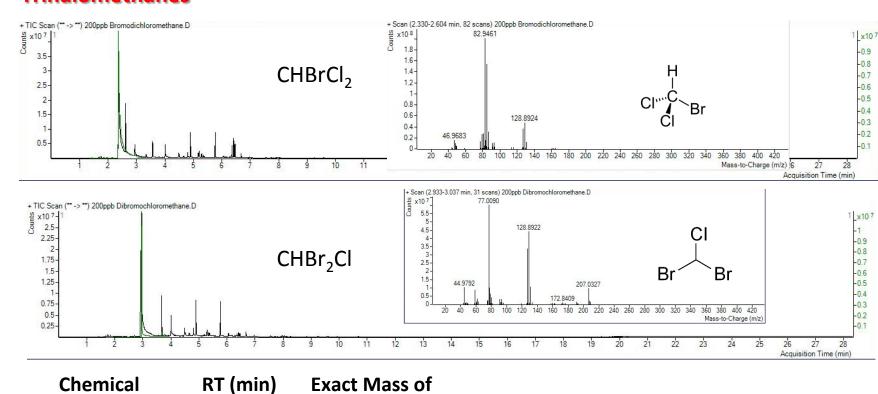
The four THMs listed above are presently regulated by the USEPA. However, there are additional THMs that are monitored by laboratories.


THM Sample Analysis


Acquisition Method- SPME/ GC Conditions				MS Conditions
Fiber Type	85 μm Carboxen/ PDMS	Cycle	SPME-04-V2	Ionization Mode EI (70eV) Data Acquisition MS Only Source Temp 230°C Quad Temp 150°C
Agitation Speed	250 rpm	Extraction Temp	65 °C	
Extraction Time	1800 sec	Desorption Time	300 sec	
Column	DB5-MS UI (30m x 250 um x 0.25 um)			Transfer Line Temp
Carrier Gas/ Flow	1.0 mL/min Helium	Purge Time	10 min	260°C Emission Current 35A° Acquisition Mode 2 GHz Acquisition Range 40-400 amu Acquisition Speed
Oven Program	Initial	50 °C	Hold 1 min	
	10 °C/min	62 °C	Hold 0 min	
	5 °C/min	80 °C	Hold 0 min	
	35 °C/min	260 °C	Hold 0 min	
Injector Temp	280 °C	Injector mode	Splitless	5 spectra/ second

Trihalomethane

Trihalomethanes

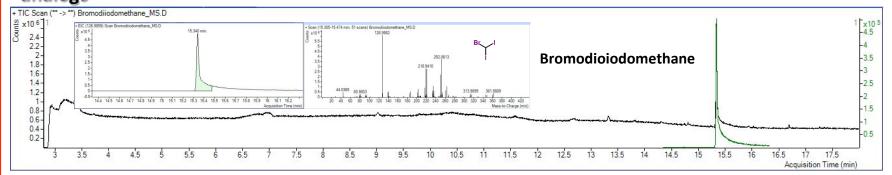


_	Chemical	RT (min)	Exact Mass of base peak	
	CHCl ₃	1.930	82.9448	
	CHBr₃	3.544	172.8434	

Trihalomethanes

Trihalomethanes

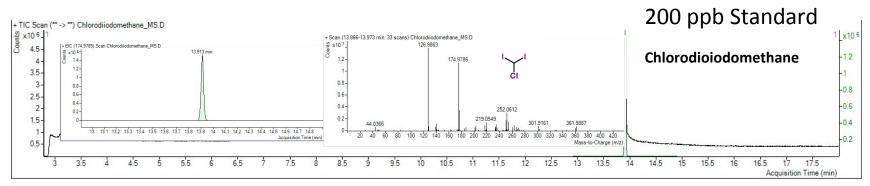
 Chemical	RT (min)	Exact Mass of base peak	
CHBrCl ₂	2.363	82.9451	
CHBr ₂ Cl	2.953	77.0048	

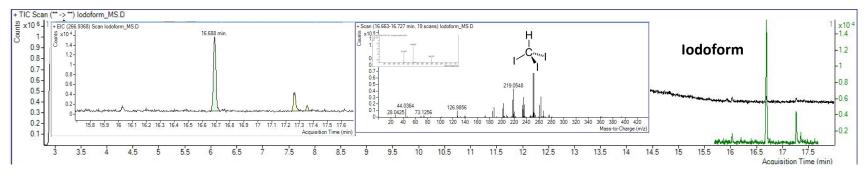


Iodinated Trihalomethanes

Iodinated Trihalomethanes

Chemical	lon	Boiling Point (°C)	Henry's constant (atm•m³•mol-1)
Bromodiiodomethane	126.9859	225	4.73e ⁻⁵
Chlorodiiodomethane	174.9785	204	1.45e ⁻⁴
Iodoform	266.9368	252	3.06e ⁻⁵


Unregulated, but more genotoxic and carcinogenic than the brominated and chlorinated analogs



 Chemical	RT (min)	Exact Mass of base peak	
CHBrl ₂	15.340	126.9859	

Iodinated Trihalomethanes

_	Chemical	RT (min)	Exact Mass of base peak	
	CHCII ₂	13.913	174.9785	
	CHI ₃	16.688	266.9368	

Conclusion & Continuing Research

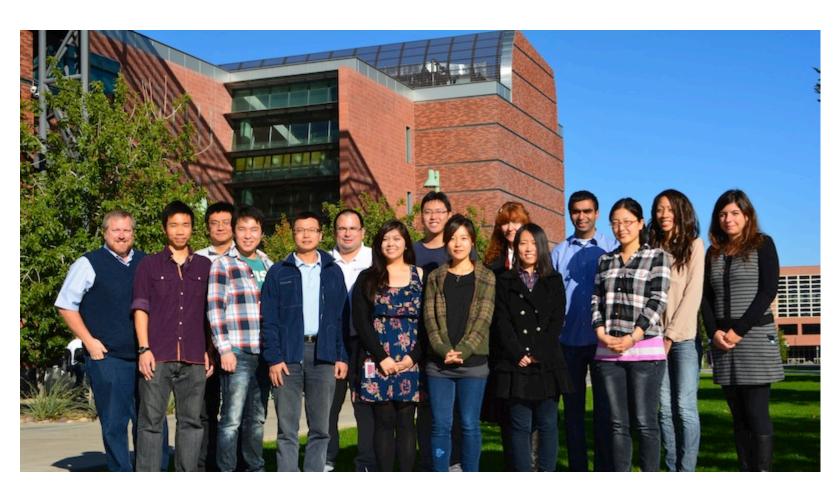
➤ Headspace-SPME/GC-QToF can detect regulated and unregulated trihalomethanes with high mass accuracy.

Additional Research

- ➤ Investigate other iodinated THMs.
- Analyze real water samples following treatment and determine the pathway for the formation of THMs.
- ➤ Study other common disinfection byproducts (i.e. Nitrosamines)

Acknowledgement

Snyder Research Group


Prof. Shane Snyder, Minkyu Park, Sylvain Merel, Tarun Anumol

Questions??

